Abstract
Thyroid nodule is one of the most common endocrine diseases in the adult population. Early screening and diagnosis of thyroid nodules is of great significance to patients’ subsequent treatment. An objective and accurate diagnosis algorithm for thyroid nodules is vital to improve the efficiency of clinical diagnosis and reduce the work pressure of doctors. In this paper, we propose a fused deep learning model for the diagnosis of benign and malignant thyroid nodules. Based on the ACR TI-RADS proposed by the American Academy of Radiology, the model first extracts 33 clinically significant statistical features of composition, echogenicity, shape, margin, and echogenic foci. After PCA dimensionality reduction, the top 4 features are fused with the feature map of EfficientNet B3. The thyroid nodules are classified into benign and malignant based on the fused feature map. This model is trained and tested on 3828 clinically collected ultrasound images of thyroid nodules. It achieves an accuracy of 96.4% and an AUC of 0.965. Compared with traditional machine learning algorithms and state-of-the-art deep learning networks, the fused model we proposed has improved classification performance and amount of parameters, and is also clinically interpretable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.