Abstract
Rolling bearing is one of the components with the high fault rate for rotating machinery. Big data-based deep learning is a hot topic in the field of bearing fault diagnosis. However, it is difficult to obtain the big actual data, which leads to a low accuracy of bearing fault diagnosis. WGAN-based data expansion approach is discussed in this paper. Firstly, the vibration signal is converted into the gray texture image by LBP to build the original data set. The small original data set is used to generate the new big data set by WGAN with GP. In order to verify its effectiveness, MMD is used for the expansion evaluation, and then the effect of the newly generated data on the original data expansion in different proportions is verified by CNN. The test results show that WGAN-GP data expansion approach can generate the high-quality samples, and CNN-based classification accuracy increases from 92.5% to 97.5% before and after the data expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.