Abstract

In this paper, a new intelligent control approach for high-speed quadruped bounding and galloping gaits is presented. The controller is capable of learning the leg touchdown angles and leg thrusts required to track the desired running height and velocity of a quadruped in only one stride. Training of the controller is accomplished not with a mathematical model, but with simple rules based on a heuristic knowledge of the quadruped mechanics. The result is a controller that produces better velocity and height tracking characteristics than a Raibert-based controller and is robust to modeling errors. Additionally, by making use of the natural dynamics of the system, gait characteristics comparable to biological quadrupeds result. The status of a legged machine being constructed for demonstration of the control approach and further study of the characteristics of galloping is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.