Abstract

This paper investigates the variable convergence rate stability and variable convergence rate stabilization of impulsive dynamic linear systems with stabilizing impulses affected by nonlinear disturbances. The eigenvalues (poles) of the system state are closely related to the convergence or divergence rate of the system. Sufficient conditions for the variable convergence rate stability are obtained by using the generalized pole placement idea and the method of system transformation. By designing a memoryless state feedback controller, sufficient conditions of variable convergence rate stabilization are obtained, ensuring the asymptotic stability of the target closed-loop system and accurately adjusting the system state’s convergence rate. An algorithm for adjusting the speed of system state convergence and its flow chart are designed by referring to the C programming language. Combined with the variable convergence rate stabilization method, the intelligent control of system state convergence speed is realized at the operation level. As a representative example of chaotic systems, Chua’s circuit affected by impulses verifies the effectiveness of the variable convergence rate stabilization method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call