Abstract
Performance of compact separators depends on implementation of stable and robust control strategies that are suited for specific applications. In this investigation, an intelligent control system has been developed for Compact Multiphase Separation System (CMSS©) which consists of integrated configurations of three compact separators, namely, Gas-Liquid Cylindrical Cyclone (GLCC©), Liquid-Liquid Cylindrical Cyclone (LLCC©) and Liquid-Liquid Hydrocyclone (LLHC). This is a two-part paper, the first part (current paper) deals with the Modeling and Simulation of the CMSS© and the second part deals with Experimental Investigation. The specific objective of this CMSS© configuration is to knock out free water from the upstream fluids. In mature oil fields, water handling poses a huge problem. Thus water knock out at the earliest stage helps in significant cost savings. A novel fuzzy logic control system has been designed and tested for change in set-point of differential pressure ratio in LLHC. Dynamic models have been developed for each of the above mentioned control systems for design of stable PID parameters. A dynamic simulation platform (DSP) has been developed based on these models in Matlab/Simulink™ for predicting the transient performance of the integrated system. Steady state mechanistic models of individual devices are integrated to the Matlab/Simulink™ platform using look up tables to predict the overall response of the CMSS© for different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.