Abstract
Brushless doubly-fed induction generator (BDFIG) has drawn significant attention in recent years in variable speed drive applications due to such features as simple and robust construction, favorable operating characteristics and reduced maintenance. The objective of BDFIG control is to achieve better performance compared to the doubly fed induction generator using the well-established vector control method. Control of a BDFIG with back-to-back PWM converters using an artificial intelligence approach, fuzzy PID controller, is proposed for a BDFIG-based variable speed wind energy conversion system. The proposed controller is adaptive in the manner that the controller parameters are modified online by using the fuzzy control rules. Comparative performance of the BDFIG with the proposed fuzzy PID controller and the conventional fixed-parameters PID controller under various operating speeds, stator reactive power references and a 100% voltage dip is investigated. Results of simulation studies using MATLAB® reported in the paper show that the limitations of the conventional PID controller can have negative effects on both quality and quantity of the generated power. Performance of the system can be improved with the proposed adaptive fuzzy PID controller under dynamic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of System Assurance Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.