Abstract

In recent years, the use of gene therapy for the treatment of disease has gained substantial interest, both in academic research and in the biomedical industry. Initial experimentation in gene therapy has generated positive results, as well as questions regarding safety. However, lessons have been learned from these first investigations, among them a realization that such treatments require a method to fine-tune the expression of therapeutic genes in real-time. A logical solution to this problem arose through the field of synthetic biology in the form of synthetic gene circuits. Thus, the synthetic biology community today aims to create "smart cells" for a variety of gene therapy applications, in an attempt to precisely target malignant cells while avoiding harming healthy ones. To generate safer and more effective gene therapies, new approaches with emerging computational abilities are necessary. In this review, we present several computational approaches which allow demonstrating artificial intelligence in living cells. Specifically, we will focus on implementing artificial neural networks using synthetic gene regulatory networks for cancer therapy and discuss the state-of-the-art computational developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.