Abstract

The task under consideration is to control a mobile manipulator for the class of nonrigid constrained motion. The working surface is deformable. The geometric and physical model of the surface is unknown and all contact force is nonlinear and difficult to model. To accomplish a task of this kind, we propose a force/motion fuzzy controller based on the philosophy of the parallel approach in two decoupled subspaces. In one subspace, we control the constant contact force normal to the surface and estimate the end-effector tool’s deformable depth of the surface; in the other, we keep the end-effector’s constant velocity parallel to the tangential plane of the surface and suppress the tangential force of the surface deformation. The nonholonomic mobile base is utilized to avoid the singularity. Stability is established and conditions for the control parameters are derived. Performance of the proposed controller is verified through computer simulations compared with the model-based control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.