Abstract
This study presents a command filtered control scheme for multi-input multi-output (MIMO) strict feedback nonlinear unmodeled dynamical systems with its applications to power systems. To deal with dynamic uncertainties, a dynamic signal is introduced, together with radial basis function neural networks (RBFNNs) to overcome the influences of the dynamic uncertainties. Command filters (CFs) are used to prevent the explosion of complexity, where the compensating signals can eliminate the effect of filter errors. Compared with single-input single-output strict feedback nonlinear systems, the method proposed in this study has more suitability. In the end, the simulation experiments are carried out by applying the developed algorithm to power systems, where the simulation results verify the efficacy of the approach proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.