Abstract
Cocoa bean (Theobrama cacao) is an essential raw material in the manufacture of chocolate, and their classification is crucial for the synthesis of good chocolate flavour. Cocoa beans appear to be very similar to one another when visualised. Hence, an electronic device named the electronic nose (E-Nose) is used to classify the odor of cocoa beans to give the best cocoa bean quality. E-nose is a set of an array of chemical sensors used to sense the gas vapours produced by the cocoa bean and the raw data collected was kept in Microsoft Excel, and the classification took place in Octave. They then underwent normalisation technique to increase classification accuracy, and their features were extracted using mean calculation. The features were classified using CBR, and the similarity value is obtained. The results show that CBR's classification accuracy, specificity and sensitivity are all 100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.