Abstract

In this paper, we propose an intelligent constant false alarm rate detector, which uses support vector machine (SVM) techniques to improve the radar detection performance in different background environments. The proposed detector uses the variability index statistic as a feature to train a SVM and recognizes the current operational environment based on the classification results. The proposed detector has the intelligence to select the proper detector threshold adaptive to the current operational environment. This detector provides a low loss performance in homogeneous backgrounds and also performs robustly in nonhomogeneous environments including multiple targets and clutter edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.