Abstract
The stable and fast service of a bus network is one of the important indicators of the service quality and management level of urban public transport. With the continuous expansion of cities, the bus network complexity has been increasing accordingly. The application of new technologies such as self-driving buses has made the bus network more complex and its vulnerability more obvious. Therefore, how to collect information on passenger flow, traffic flow, and transport distribution using intelligent means, and how to establish an effective intelligent bus scheduling control method have been important questions surrounding the improvement of the level of urban bus operation. To address this challenge, this paper proposes the design method of a bus controller based on data collection and the edge computing requirements of autonomous driving buses; and installs them widely on buses. In addition, an intelligent bus control scheduling method based on the simulated annealing genetic algorithm was developed according to the current scheduling requirements. The proposed method combines the strong local search ability of the simulated annealing algorithm, which prevents the search process from falling into a local optimum, and the strong search ability of the genetic algorithm in the overall search process, leading an intelligent bus control scheduling method based on the simulated annealing genetic algorithm. The proposed method was verified by experiments on the optimal scheduling of multi-destination public transport as an example, we verified the research method, and finally, simulated it using historical data. There is good model prediction of the experimental results. Therefore, the intelligent traffic control can be realized through efficient bus scheduling, thus improving the robustness of the bus network operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.