Abstract

CLP(ℜ) is a constraint logic programming language in which constraints can be expressed in the domain of real numbers. Computation in this specialized domain gives access to information useful in intelligent backtracking. In this paper, we present an efficient constraint satisfaction algorithm for linear constraints in the real number domain and show that our algorithm directly generates minimal sets of conflicting constraints when failures occur. We demonstrate how information gleaned during constraint satisfaction can be integrated with unification failure analysis. The resulting intelligent backtracking method works in the context of a two-sorted domain, where variables can be bound to either structured terms or real number expressions. We discuss the implementation of backtracking and show examples where the benefit of pruning the search tree outweights the overhead of failure analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.