Abstract

This paper presents an intelligent automatic landing system that uses a time delay neural network controller and a linearized inverse aircraft model to improve the performance of conventional automatic landing systems. The automatic landing system of an airplane is enabled only under limited conditions. If severe wind disturbances are encountered, the pilot must handle the aircraft due to the limits of the automatic landing system. In this study, a learning-through-time process is used in the controller training. Simulation results show that the neural network controller can act as an experienced pilot and guide the aircraft to a safe landing in severe wind disturbance environments without using the gain scheduling technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.