Abstract

Internet and telecom service providers worldwide are facing financial sustainability issues in migrating their existing legacy IPv4 networking system due to backward compatibility issues with the latest generation networking paradigms viz. Internet protocol version 6 (IPv6) and software-defined networking (SDN). Bench marking of existing networking devices is required to identify their status whether the existing running devices are upgradable or need replacement to make them operable with SDN and IPv6 networking so that internet and telecom service providers can properly plan their network migration to optimize capital and operational expenditures for future sustainability. In this paper, we implement “adaptive neuro fuzzy inference system (ANFIS)”, a well-known intelligent approach for network device status identification to classify whether a network device is upgradable or requires replacement. Similarly, we establish a knowledge base (KB) system to store the information of device internetwork operating system (IoS)/firmware version, its SDN, and IPv6 support with end-of-life and end-of-support. For input to ANFIS, device performance metrics such as average CPU utilization, throughput, and memory capacity are retrieved and mapped with data from KB. We run the experiment with other well-known classification methods, for example, support vector machine (SVM), fine tree, and liner regression to compare performance results with ANFIS. The comparative results show that the ANFIS-based classification approach is more accurate and optimal than other methods. For service providers with a large number of network devices, this approach assists them to properly classify the device and make a decision for the smooth transitioning to SDN-enabled IPv6 networks.

Highlights

  • Introduction iationsThe world’s information and communication technology (ICT) industries are moving to the very first new technologies like the 5G-based mobile network [1,2], industry 4.0 with the vision for industry 5.0-based society [3,4,5], cloud services with the advancement on modern datacenter operation and management, Internet protocol version 6 (IPv6)addressing mechanism [6], software-defined networking (SDN) [7] paradigm, and many more

  • We focus on a solution to assess the existing networking devices for efficient transformations of existing network infrastructure into softwaredefined networking (SDN)-enabled IPv6 network termed software-defined IPv6 (SoDIP6) network [8] with optimum costs

  • Many classification algorithms in machine learning are available for which based on the data patterns available and design of input variables, we comparatively present the approaches and evaluate the performance using regression tree, support vector machine, ensemble tree, and implement adaptive neuro fuzzy inference system (ANFIS) to solve this migration problem

Read more

Summary

Introduction

Introduction iationsThe world’s information and communication technology (ICT) industries are moving to the very first new technologies like the 5G-based mobile network [1,2], industry 4.0 with the vision for industry 5.0-based society [3,4,5], cloud services with the advancement on modern datacenter operation and management, Internet protocol version 6 (IPv6)addressing mechanism [6], software-defined networking (SDN) [7] paradigm, and many more. Migration to SDN in telecom operators’ (Telcos) and Internet service providers’ (ISP) networks have evolved with significant progress on developing transition technologies [12,20,21]. In this regard, based on the inter-relationship defined between SDN and IPv6 networking paradigms, we have developed the proper transition planning and migration cost minimization with their benefits and challenges of migration for joint migration to the SoDIP6 network in our previous works [9,13,17,22,23,24]

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call