Abstract
Amount of software engineering data gathered by software companies amplifies importance of tools and techniques dedicated to processing and analysis of data. More and more methods are being developed to extract knowledge from data and build data models. In such cases, selection of the most suitable data processing methods and quality of extracted knowledge is of great importance. Software maintenance is one of the most time and effort-consuming tasks among all phases of a software life cycle. Maintenance managers and personnel look for methods and tools supporting analysis of software maintenance data in order to gain knowledge needed to prepare better plans and schedules of software maintenance activities. Software engineering data models should provide quantitative as well as qualitative outputs. It is desirable to build these models based on a welldelineated logic structure. Such models would enhance maintainers’ understanding of factors which influence maintenance efforts. This chapter focuses on defect-related activities that are the core of corrective maintenance. Two aspects of these activities are considered: a number of software components that have to be examined during a defect removing process, and time needed to remove a single defect. Analysis of the available datasets leads to development of data models, extraction of IF-THEN rules from these models, and construction of ensemble-based prediction systems that are built based on these data models. The data models are developed using well-known tools such as See5/C5.0 and 4cRuleBuilder, and a new multi-level evolutionary-based algorithm. Single data models are put together into ensemble prediction systems that use elements of evidence theory for the purpose of inference about a degree of belief in the final prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.