Abstract
This research tackles the critical challenge of BeiDou signal spoofing in vehicular ad-hoc networks and addresses significant risks to vehicular safety and traffic management stemming from increased reliance on accurate satellite navigation. The study proposes a novel hybrid machine learning framework that integrates Autoencoders and long short-term memory (LSTM) networks with an advanced cryptographic method, attribute-based encryption, to enhance the detection and mitigation of spoofing attacks. Our methodology leverages both real-time and synthetic navigational data in a comprehensive experimental setup that simulates various spoofing scenarios to test the resilience of the proposed system. The findings demonstrate a significant improvement in the accuracy of spoofing detection and the robustness of mitigation strategies by ensuring the integrity and reliability of navigational data. This investigation enhances the existing body of knowledge by demonstrating the effectiveness of integrating machine learning with cryptographic techniques to secure VANETs. Ultimately, it effectively paves the way for future research into adaptive security mechanisms that can dynamically respond to evolving cyber threats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.