Abstract
AbstractThis paper presents two intelligent adaptive controllers, called self‐balancing and speed controllers, for self‐balancing and motion control, respectively, of an electric unicycle using fuzzy basis function networks (FBFN), which are employed to approximate model uncertainties and unknown friction between the wheel and the terrain surface. Both controllers are established based on the linearized model of the vehicle whose model uncertainties and parameter variations are caused by different riders and terrain. An adaptive backstepping controller together with online learning FBFN and sensing information of the rider's body inclination then is presented to achieve self‐balancing motion control. By adding an electronic throttle as the input device of speed commands, a decoupling sliding‐mode controller with online learning FBFN is proposed to accomplish self‐balancing and speed control. The performance and merit of the two proposed control methods are exemplified by conducting four simulations and three experiments on a laboratory‐built electric unicycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.