Abstract

With the rising incidences of emergencies, it is both challenging and meaningful to study how to make decisions quickly and take appropriate measures to control the spread and evolution of the situation. However, most current emergency decision-making focuses on mathematical model construction, whereas fuzzy decision-making is biased towards subjective assumptions, which are both insufficient for practicability. We studied the intelligent acquisition of single-valued neutrosophic numbers based on emotional tendency analysis and applied them to emergency decision-making. First, Python programming technology was used to crawl, preprocess, and statistically analyse the network comment data of emergencies, and a quantised single-value neutrosophic number was obtained. Second, the attribute values, represented as neutrosophic numbers, were uniformly converted into cloud droplets, and the weight of the attribute values was objectively determined according to the digital feature entropy in the cloud droplets. Subsequently, a case-based reasoning approach was used to calculate the combined weighted similarity between the alternatives and ideal solution (target case) to obtain a ranking of the alternatives and historical cases in the case base that best matches the target case. Finally, a typhoon disaster assessment was considered as an example to verify the feasibility and effectiveness of the proposed method, and the advantages of the proposed method were emphasised through multi-aspect and multi-angle comparative analyses. The relevant research can be used for public opinion monitoring during emergencies and emergency handling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call