Abstract

General cognitive ability (or general intelligence; g) is a latent variable that describes performance across a broad array of cognitive skills. This general influence on cognitive ability varies between individuals and shares a similar structure in both humans and mice. Evidence suggests that much of the variation in general intelligence is related to the efficacy of the working memory system. We have previously observed that one component of the working memory system, selective attention, disproportionately accounts for the relationship between working memory and general intelligence in genetically heterogeneous mice. In the three studies reported here, we test a hypothesis that emerges from human behavioral studies which suggests that attentional disengagement, a sub-component of selective attention, critically mediates its relationship with g. Studies 1 and 2 both assess the factor loadings (on a principal component analysis) of the performance of mice on an array of learning tasks as well as tasks designed to make explicit demands on attentional disengagement. We find that attentional disengagement tasks load more highly than measures of cognitive performance that place less explicit demands on disengagement and that performance in these disengagement tasks is strongly predictive of the general cognitive performance of individual animals. In Study 3 we observed that groups of mice (young and old) with known differences in general cognitive abilities differ more on a discrimination task that requires attentional disengagement than on a simple discrimination task with fewer demands on disengagement. In total, these results provide support for the hypothesis that attentional disengagement is strongly related to general intelligence, and that variations in this ability may contribute to both individual differences in intelligence as well as age-related cognitive declines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.