Abstract

In this article, a direct adaptive neural networks control algorithm is presented for a class of SISO discrete-time systems with non-symmetric dead-zone. The property of the dead-zone is discretized. Mean value theorem is used to transform the systems into a special form. The unknown functions in the input–output model are approximated using the radial basis function neural networks. Compared with the results for the discrete non-symmetric dead-zone, this article presents a new algorithm to reduce the computational burden. Lyapunov analysis method is utilized to prove that all the signals in the closed-loop systems are semi-global uniformly ultimately bounded. The tracking error is proved to converge to a small set around the zero. A simulation example provided to illustrate the effectiveness of the control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call