Abstract

This research paper represents an intelligent receiver based on the artificial-neuralnetworks (ANNs) for a 4x1 space-frequency-block-coded orthogonal-frequencydivision-multiplexing (SFBC-OFDM) system, working under slow time-varying frequency-selective fading channels. The proposed equalizer directly recovers transmitted symbols from the received signal, without the explicit requirement of the channel estimation. The ANN based equalizer is modelled by using feedforward as well as the recurrent neural-network (NN) architectures, and is trained using error backpropagation algorithms. The major focus is on efficiency and efficacy of three different strategies, namely the gradient-descent with momentum (GDM), resilient-propagation (RProp), and Levenberg-Marquardt (LM) algorithms. The recurrent neural network architecture based SFBC-OFDM system is found to be an appropriate choice in terms of the low bit-error-rate performance, while using different quasi-orthogonal space-time block codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.