Abstract

Artificial intelligence is a highly polysemic term. In computer science, with the objective of being able to solve totally new problems in new contexts, artificial intelligence includes connectionism (neural networks) for learning and logics for reasoning. Artificial intelligence algorithms mimic tasks normally requiring human intelligence, like deduction, induction, and abduction. All apply to radiation oncology. Combined with radiomics, neural networks have obtained good results in image classification, natural language processing, phenotyping based on electronic health records, and adaptive radiation therapy. General adversial networks have been tested to generate synthetic data. Logics based systems have been developed for providing formal domain ontologies, supporting clinical decision and checking consistency of the systems. Artificial intelligence must integrate both deep learning and logic approaches to perform complex tasks and go beyond the so-called narrow artificial intelligence that is tailored to perform some highly specialized task. Combined together with mechanistic models, artificial intelligence has the potential to provide new tools such as digital twins for precision oncology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.