Abstract

ObjectivesThe purpose of this study was to explore the relationship between EEG phase reset and performance on the Wechsler Intelligence test. MethodsThe electroencephalogram (EEG) was recorded from 19 scalp locations from 378 subjects ranging in age from 5 years to 17.6 years. The Wechsler Intelligence test (WISC-R) was administered to the same subjects on the same day but not while the EEG was recorded. Complex demodulation was used to compute instantaneous EEG phase differences between pairs of electrodes and the 1st and 2nd derivatives were used to measure phase reset by phase shift duration and phase lock duration. The dependent variable was full scale I.Q. and the independent variables were phase shift duration (SD) and phase lock duration (LD) with age as a covariate. ResultsPhase shift duration (40–90 ms) was positively related to intelligence (P<.00001) and the phase lock duration (100–800 ms) was negatively related to intelligence (P<.00001). Phase reset in short interelectrode distances (6 cm) was more highly correlated to I.Q. (P<.0001) than in long distances (>12 cm). ConclusionsThe duration of unstable phase dynamics and phase locking represent a bounded optimization process, for example, too long a duration of phase locking then less flexibility and too short of a phase shift then reduced neural resources. A two compartmental model of local field coupling and neuron synchrony to a preferred phase was developed to explain the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call