Abstract
This study investigates simulation of pharmaceutical separation via membrane distillation process by computational simulation and machine learning modeling strategy. The efficacy of three regression models, i.e., Multi-layer Perceptron (MLP), Gamma Regression, and Support Vector Regression (SVR) in predicting the solute concentration, C(mol/m³), was evaluated. The hyper-parameters were optimized by fine-tuning the models using the Red Deer Algorithm (RDA). Computational analyses were carried out for removal of pharmaceuticals from solution by membrane distillation in continuous mode. Mass transfer and machine learning models were implemented focusing on concentration of solute in the feed section of membrane. Results indicate that the Multi-layer Perceptron model achieved great accuracy with an R2 of 0.9955, an MAE of 0.0084, and an RMSE of 0.0148, effectively capturing complex nonlinear relationships in the data. Gamma Regression also performed acceptably, with fitting R2 of 0.9214, showing its suitability for positively skewed data. The Support Vector Regression model, while capturing the general trend, showed the lowest performance with an R2 of 0.8710. These findings suggest that the Multi-layer Perceptron is the most accurate model for this dataset, followed by Gamma Regression and Support Vector Regression. This underscores the importance of careful model selection and optimization in regression analysis in combination with computational simulation of membrane processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.