Abstract
Memory-safety violations are the primary cause of security and reliability issues in software systems written in unsafe languages. Given the limited adoption of decades-long research in software-based memory safety approaches, as an alternative, Intel released Memory Protection Extensions (MPX)---a hardware-assisted technique to achieve memory safety. In this work, we perform an exhaustive study of Intel MPX architecture along three dimensions: (a) performance overheads, (b) security guarantees, and (c) usability issues.We present the first detailed root cause analysis of problems in the Intel MPX architecture through a cross-layer dissection of the entire system stack, involving the hardware, operating system, compilers, and applications. To put our findings into perspective, we also present an in-depth comparison of Intel MPX with three prominent types of software-based memory safety approaches. Lastly, based on our investigation, we propose directions for potential changes to the Intel MPX architecture to aid the design space exploration of future hardware extensions for memory safety.A complete version of this work appears in the 2018 proceedings of the ACM on Measurement and Analysis of Computing Systems.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.