Abstract
Protein hydrogels have important applications in tissue engineering, drug delivery, and biofabrication. We present the development of a novel self-assembling protein hydrogel triggered by mixing two soluble protein block copolymers, each containing one half of a split intein. Mixing these building blocks initiates an intein trans-splicing reaction that yields a hydrogel that is highly stable over a wide range of pH (6-10) and temperature (4-50 °C), instantaneously recovers its mechanical properties after shear-induced breakdown, and is compatible with both aqueous and organic solvents. Incorporating a "docking station" peptide into the hydrogel building blocks enables simple and stable immobilization of docking protein-fused bioactive proteins in the hydrogel. This intein-triggered protein hydrogel technology opens new avenues for both in vitro metabolic pathway construction and functional/biocompatible tissue engineering scaffolds and provides a convenient platform for immobilizing enzymes in industrial biocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.