Abstract

We investigate the relations between wavelet shrinkage and integrodifferential equations for image simplification and denoising in the discrete case. Previous investigations in the continuous one-dimensional setting are transferred to the discrete multidimentional case. The key observation is that a wavelet transform can be understood as derivative operator in connection with convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete formulation with both orthogonal and biorthogonal wavelets. In the discrete setting, the behaviour of the smoothing kernels for different scales is more complicated than in the continuous setting and of special interest for the understanding of the filters. With the help of tensor product wavelets and special shrinkage rules, the approach is extended to more than one spatial dimension. The results of wavelet shrinkage and related integrodifferential equations are compared in terms of quality by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.