Abstract

We derive an integro-differential equation for the joint probability density function in phase space associated with the continuous-time random walk, with generic waiting time probability density function and external force. This equation permits us to investigate whole diffusion processes covering initial-, intermediate-, and long-time ranges, which can distinguish the evolution details for systems having the same behavior in the long-time limit with different initial- and intermediate-time behaviors. Moreover, we obtained analytic solutions for probability density functions both in velocity and phase spaces, and interesting dynamic behaviors are discovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.