Abstract
The start point of the dual phase lag equation (DPLE) formulation is the generalized Fourier law in which two positive constants (the relaxation and thermalization times) appear. This type of equation can be used (among others) to describe the heat conduction processes proceeding in micro-scale. Depending on the number of components in the development of the generalized Fourier law into a power series, one can obtain both the first-order DPLE and the second-order one. In this paper the first-order dual phase lag equation is considered. The primary objective of this research is the transformation of DPLE differential form to the integro-differential one supplemented by the appropriate boundary-initial conditions. The obtained form of the differential equation is much simpler and more convenient at the stage of numerical computations – the numerical algorithm based on the three-time-level scheme reduces to the two-time-level one. To find the numerical solution, the Control Volume Method is used (the heating of thin metal film subjected to a laser beam is considered). The choice of the numerical method was not accidental. The method has a simple physical interpretation ensuring the preservation of the local and global energy balances. To our knowledge, it has not been used so far in this type of tasks. In the final part of the paper the examples of numerical simulations are presented and the conclusions are formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.