Abstract

We examine the unique solvability of an initial-value problem for a certain higher-order quasilinear partial integro-differential equation with a degenerate kernel. Expressing the higher-order partial integro-differential operator as the superposition of first-order partial differential operators, we represent the integro-differential equation considered as an ordinary integro-differential equations that describes the change of the unknown function along characteristics. Using the method of successive approximations, we prove the unique solvability of the initial-value problem and obtain an estimate for the convergence rate of the Picard iterative process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.