Abstract

The neural cell adhesion molecule NCAM is a member of the immunoglobulin (Ig) superfamily. NCAM can undergo homophilic binding and heterophilic interactions with cell surface components and is often concentrated at sites of intercellular contact. To investigate the molecular basis of this biased surface distribution, we examined L cell transfectants expressing wild-type or mutant forms of chick NCAM-140 by laser scanning confocal microscopy. Mutant NCAMs that lacked Ig-like domains 1, 2, 4, or 5 were preferentially localized in contact regions. However, the relative concentration of these mutant NCAMs in contact sites was substantially reduced compared with wild-type NCAM. In contrast, NCAM redistribution to intercellular contacts was abolished in cells expressing mutant NCAMs that either lacked Ig-like domain 3 or contained mutations in the homophilic binding site in this domain. In heterotypic contacts between PC12 cells and L cell transfectants, colocalization of rat NCAM and chick NCAM was again dependent on the integrity of the homophilic binding site of the NCAM expressed on L cells. These results provide evidence that homophilic binding is the main mechanism by which NCAM becomes redistributed to intercellular contacts. They also implicate a role for other Ig-like domains in the accumulation of NCAM at cell-cell contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.