Abstract

Integrity monitoring for precise point positioning is critical for safety-related applications. With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles, the integrity monitoring method of high-precision positioning has become an essential requirement. While high precision Global Navigation Satellite Systems (GNSS) positioning is widely used in such applications, there are still many difficulties in the integrity monitoring method for the multi-frequency multi-GNSS undifferenced and uncombined Precise Point Positioning (PPP). The main difficulties are caused by using the measurements of multiple epochs in PPP. Based on the baseline Multiple Hypothesis Solution Separation (MHSS) Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm, this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic (RTK) networks (PPP-RTK) framework to overcome these difficulties. In addition, a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework. The simulation results using the proposed model are analyzed in this study. The Protection Levels (PLs) estimated by PPP Wide-lane Ambiguity Resolution (PPP-WAR) model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution (PPP-AR) and PPP-RTK models are usually the sub-meter level. Given a horizontal Alert Limit (AL) of 1.5 m, the global coverage of availability above 99.9% for PPP-WAR, PPP-AR, and PPP-RTK can reach 92.6%, 99.4%, and 99.7% respectively. The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call