Abstract

A series of numerical procedures have been presented recently for the integrity assessment of structures based upon the Linear Matching Method. A typical example of a holed plate has been used to verify these procedures for the evaluation of plastic and creep behaviours of components. In this paper, a more complex 2D tubeplate at the outlet from a typical AGR heat exchanger is analysed for the shakedown limit, reverse plasticity, ratchet limit and creep relaxation based on the application of the Linear Matching Method for a thorough case study. Both a constant material yield stress and a temperature-dependent yield stress are adopted for the evaluation of the ratchet limit. For the evaluation of accumulated creep strains, flow stresses and elastic follow-up factors with differing dwell times at the steady cyclic state, a monotonic creep computation is performed, where the start-of-dwell stress is the rapid cycle creep solution at the beginning of the dwell period. An estimation of the tubeplate lifetime is then obtained by the evaluation of fatigue and creep endurances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.