Abstract

Cement is commonly used in the rapid construction of emergency airports; however, cemented soils have issues with integrity and crack resistance. For example, cemented soils can crack easily, and overall stability is insufficient. To address these problems, cemented soil is reinforced with hybrid polypropylene fiber, and the anti-flying property, anti-wear property, and crack resistance of polypropylene fiber reinforced cemented soil with varying fiber lengths, fiber contents, and fiber combinations are examined through flying tests, wear tests, and crack tests. Results show that the reinforcement of fiber can significantly improve the anti-flying property, anti-wear property, and crack resistance of cemented soil. The content and fiber length have a great impact on properties of fiber reinforced cemented soil. The ideal length and content of fine polypropylene fiber are 12 mm and 0.3%, respectively. The ideal combination of hybrid polypropylene fiber reinforced cemented soil is 0.3% coarse polypropylene fiber with the length of 38 mm and 0.3% fine polypropylene fiber with the length of 12 mm. In addition, hybrid polypropylene fiber reinforced cemented soil mechanical properties exceed those of single polypropylene fiber reinforced cemented soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.