Abstract
Both inflammation and neoangiogenesis contribute to abdominal aortic aneurysm (AAA) disease. Arg-Gly-Asp-based molecular imaging has been shown to detect the integrin αvβ3. We studied a clinical dimeric (18)F-labeled Arg-Gly-Asp positron-emission tomography (PET) agent ((18)F-FPPRGD2) for molecular imaging of experimental AAAs. Murine AAAs were induced in Apo-E-deficient mice by angiotensin II infusion, with monitoring of aortic diameter on ultrasound. AAA (n=10) and saline-infused control mice (n=7) were injected intravenously with (18)F-FPPRGD2, as well as an intravascular computed tomography contrast agent, then scanned using a small-animal PET/computed tomography scanner. Aortic uptake of (18)F-FPPRGD2 was quantified by percentage-injected dose per gram and target-to- =0.003; median target-to- =0.0008). Ex vivo autoradiography demonstrated high uptake of (18)F-FPPRGD2 into the AAA wall, with immunohistochemistry showing substantial cluster of differentiation (CD)-11b(+) macrophages and CD-31(+) neovessels. Target-to- =-0.29, P=0.41) but did strongly correlate with both mural macrophage density (r=0.79, P=0.007) and neovessel counts (r=0.87, P=0.001) on immunohistochemistry. PET imaging of experimental AAAs using (18)F-FPPRGD2 detects biologically active disease, correlating to the degree of vascular inflammation and neoangiogenesis. This may provide a clinically translatable molecular imaging approach to characterize AAA biology to predict risk beyond size alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.