Abstract
The unique ability of the osteoclast to degrade skeletal tissue depends upon formation of a resorptive microenvironment between the osteoclast and the bone surface. Generation of this privileged space is substantially mediated by signals emanating from alphavbeta3 integrin, which transits to its active high-affinity conformation by growth factor-initiated intracellular events targeting the matrix receptor's cytoplasmic domain. The activated liganded integrin stimulates a signaling complex consisting of c-Src, Syk, immunoreceptor tyrosine-based activation motif proteins, Slp-76, Vav3, and members of the Rho family of GTPases. These events contribute to secretory lysososme insertion into the bone-apposed plasma membrane to form the ruffled border that delivers the bone-degrading molecules (HCl and cathepsin K) into the resorptive microenvironment. Integrin/bone recognition also promotes formation of actin rings, which surround the ruffled border, thereby isolating the focus of skeletal degradation from the general extracellular space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.