Abstract
Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials, which are affected by surface properties of implanted materials such as surface wettability. Our previous study demonstrated that, as model substrates, EC adhesion/migration showed an opposite behavior on the hydrophobic and hydrophilic surfaces of plasma SiOx:H nanocoatings. Extending our previous works, the expression and distribution of crucial proteins in integrins-FAK-Rho GTPases signaling pathways were examined, respectively. The results showed that a hydrophilic surface could enhance the expression of focal adhesion protein associated with cell adhesion; however, the hydrophobic surface could improve the expression of Rho GTPases associated with cell migration and phosphorylation level of FAK, revealing the potential reason of surface wettability mediating different cells' adhesion/migration behaviors. These findings reveal the relationship and molecular mechanism of endothelial cell adhesion/migration, which was expected to guide the surface modification of implants for accelerating endothelialization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.