Abstract
Integrins are a major family of heterodimeric surface glycoproteins that act as adhesion molecules, have a spectrum of extracellular matrix (ECM) molecules as their ligands, and regulate a variety of cellular functions. Integrins are known to be critical to embryonic brain development, and recent studies have indicated their essential role in adult brain function, although their role in postnatal brain development and function has not been examined. Here, we used the organotypic slice culture system to investigate the role of integrins in postnatal hippocampal development by exposing the tissue to either an integrin competitive antagonist, the peptide GRGDSP containing Arg–Gly–Asp (RGD) attachment site, or to function-blocking β 1-integrin antibodies to disrupt integrin interactions. These experiments revealed that β 1-integrin antibodies interfered with spreading of the culture, resulting in a rapid and marked diminution of slice area. β 1-integrin antibodies and RGD peptide disrupted cell adhesion, causing cell detachment and migration of glial cells from the explant. The majority of the detached cells were of macroglial origin and switched to expression of the intermediate filament proteins vimentin and nestin, suggesting a developmental regression. The organotypic organization of slice cultures was not affected, although exposure to either integrin antagonist or antibody resulted in a statistically significant reduction in the number of synapses measured in the apical dendrites of CA1 pyramidal neurons. The results demonstrate that integrins markedly affect postnatal CNS development, in both ultrastructural construction and organizational processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.