Abstract

Integrin α(v)β(3) plays an important role in tumor angiogenesis, growth, and metastasis. We have tested a targeted probe to visualize integrin receptor expression in glioblastomas using near-infrared fluorescent (NIRF) imaging. A transgenic glioblastoma mouse model (RCAS-PDGF-driven/tv-a glioblastoma, which mimics the infiltrative growth pattern of human glioblastomas) and two human orthotopic glioblastoma models (U-87 MG with high integrin β(3) expression and TS543 with low integrin β(3) expression) were studied. An integrin-targeting NIRF probe, IRDye 800CW-cyclic-RGD peptide (IRDye 800CW-RGD), was tested by in vivo and ex vivo NIRF imaging. We show that the IRDye 800CW-RGD peptide: (i) specifically binds to integrin receptors; (ii) is selectively localized to glioblastoma tissue with overexpressed integrin receptors and is retained over prolonged periods of time; (iii) is associated with minimal autofluorescence and photobleaching because of imaging at 800 nm; (iv) provides delineation of tumor tissue with high precision because of a high tumor-to-normal brain fluorescence ratio (79.7 ± 6.9, 31.2 ± 2.8, and 16.3 ± 1.3) in the U-87 MG, RCAS-PDGF, and TS543 models, respectively; P < 0.01); and (v) enables fluorescence-guided glioblastoma resection. Importantly, small foci of residual fluorescence were observed after resection was completed using white light imaging alone, and these fluorescent foci were shown to represent residual tumor tissue by histology. NIRF imaging with the IRDye 800CW-RGD probe provides a simple, rapid, low-cost, nonradioactive, and highly translatable approach for improved intraoperative glioblastoma visualization and resection. It also has the potential to serve as an imaging platform for noninvasive cancer detection and drug efficacy evaluation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.