Abstract

Integrin-mediated adhesion to the extracellular matrix is a key regulator of the cell cycle, as demonstrated for the passage of the G1/S checkpoint and the completion of cytokinetic abscission. Here, integrin-dependent regulation of the cell cycle in G2 and early M phases was investigated. The progression through the G2 and M phases was monitored by live-cell imaging and immunofluorescence staining in adherent and non-adherent fibroblast cells. Non-adherent cells, as well as adherent cells lacking FAK activity due to suppressed expression or pharmacological inhibition, exhibited a prolonged G2 phase and severely defect centrosome separation, resulting in delayed progress through the early mitotic stages. The activation of the critical mitotic regulator PLK1 and its indirect target Eg5, a kinesin-family motor protein driving the centrosome separation, were reduced in the cells lacking FAK activity. Furthermore, the absence of integrin adhesion or FAK activity destabilized the structural integrity of centrosomes and often caused detachment of pericentriolar material from the centrioles. These data identify a novel adhesion-dependent mechanism by which integrins via FAK and PLK1 contribute to the regulation of the cell cycle in the G2 and early M phases, and to the maintenance of genome integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call