Abstract
Recent advances in cardiac physiology identify the integrin-linked kinase (ILK) as an essential molecule regulating cardiac growth, contractility, and repair. A key transducer of biochemical signals initiated at the plasma membrane by cell-matrix interactions, ILK now emerges as a crucial player in mechanotransduction by integrins. Animal models have been particularly instructive in dissecting the cardiac functions of ILK and its associated proteins, such as parvins and PINCH, and have clearly established ILK as a major contributor to cardiac health. ILK gene knockouts in mice, flies, and worms result in early embryonic lethality because of cell adhesion defects and cytoskeletal disorganization. Although widely distributed in mammalian tissues, ILK expression is highest in the heart, and cardiac-specific ablation of ILK causes cardiomyopathy and sudden death in mice. ILK protein complexes are found in the sarcomere, which is the basic contractile unit of myocytes. A natural inactivating mutation in the kinase domain of ILK disrupts ILK protein interactions in the sarcomere, causing a contractile defect in the zebrafish heart. The relatively subtle phenotype of mutant ILK hearts, compared with ILK-ablated hearts, suggests multiple cardiac ILK functions. Cardiac-specific expression of ILK in transgenic mice induces a hypertrophic program, pointing to ILK as a proximal regulator of multiple hypertrophic signal transduction pathways. ILK protein interactions may also be important in mediating postinfarct cell migration and myocardial repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.