Abstract

Dynamic connections between actin filaments and the plasma membrane are crucial for the regulation of blood platelet functions. Protein complexes associated with alphaIIbbeta3 integrin-based cytoskeleton structures are known to play a role in these processes. However, mechanisms involving lateral organizations of the plasma membrane remain to be investigated. Here, we demonstrate that a large fraction of platelet lipid rafts specifically associates with the actin cytoskeleton upon activation. This association was inhibited by antagonists of fibrinogen-alphaIIbbeta3 binding and did not occur in type I Glanzman's thrombasthenic platelets. The raft-cytoskeleton interaction is a reversible process correlating with the intensity and stability of platelet aggregation. Although only a minor fraction of alphaIIbbeta3 was recovered in rafts upon activation, this integrin specifically upregulated the level of PtdIns(4,5)P2 in membrane microdomains and induced the recruitment of several actin-modulating proteins known to directly or indirectly interact with this lipid. Controlled disruption of rafts did not affect alphaIIbbeta3-mediated platelet aggregation in response to high concentrations of thrombin but significantly inhibited fibrin clot retraction. We propose that rafts participate in the organization of membrane-cytoskeleton interactions where alphaIIbbeta3-mediated tension forces apply during the late phase of platelet activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.