Abstract

Electrical stimulation has been used to promote wound healing. The mechanisms by which such stimulation could interact with biological systems to accelerate healing have not been elucidated. One potential mechanism could involve stimulation of macrophage migration to the site of a wound. Here we report that oscillatory electric fields induce human macrophage migration. Macrophages exposed to a 1 Hz, 2 V/cm field show an induced migration velocity of 5.2+/-0.4 x 10(-2) microm/min and a random motility coefficient of 4.8+/-1.4 x 10(-2) microm2/min on a glass substrate. Electric field exposure induces reorganization of microfilaments from ring-like structures at the cell periphery to podosomes that are confined to the contact sites between cell and substrate, suggesting that the cells are crawling on glass. Treatment of cells with monoclonal antibodies directed against beta2-integrins prior to field exposure prevents cell migration, indicating that integrin-dependent signaling pathways are involved. Electric fields cause macrophage migration on laminin or fibronectin coated substrates without inducing podosome formation or changes in cellular morphology. The migration velocity is not significantly altered but the random movement is suppressed, suggesting that cell movements on a laminin- or fibronectin-coated surface are not mediated by cell crawling. It is suggested that electric field-induced macrophage migration utilizes several modes of cell movement, including cell crawling and possibly cell rolling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call