Abstract
Sepsis is a major challenge in clinical practice and responsible for high mortality. Recent studies indicated that integrins participated in toll-like-receptor (TLR)-mediated innate immunity. In the present study, we investigated the mechanism of integrin β3 and TLR4 signaling using a cecal ligation and puncture (CLP)-induced sepsis and lipopolysaccharide (LPS)-treated macrophage cell model. In a lethal CLP model, the survival rate of integrin β3 mice was higher than that of wild-type mice. The levels of alanine aminotransferase, aspartate transaminase, creatinine, blood urea nitrogen , and lactate dehydrogenase in the serum and cluster of differentiation 14 (CD14) protein expression in the tissues were significantly decreased in integrin β3 mice. A similar effect with regard to CD14 down-regulation was observed in septic TLR4 mice. In wild-type macrophages, the inhibition of integrin β3 by P11 or with a specific antibody, inhibited TNF-α, and IL-6 release at the early time period of LPS stimulation. However, during the late periods of LPS stimulation this effect was not noted. CD14 expression levels had no change in such treatment. In contract, LPS-induced TNF-α and IL-6 release and LPS-induced CD14 expression were significantly decreased in integrin β3macrophages. The inhibition of the TLR4 pathway by TAK-242, or in TLR4 mutant macrophages abolished LPS-induced CD14 expression. Integrin β3 pathway activation by vitronectin exhibited no effect in CD14 expression. Furthermore, recombinant CD14 protein stimulation reversed integrin β3 deficiency and caused lower TNF-α and IL-6 release. Moreover, the molecular interaction of TLR4 and integrin β3 was significantly increased following LPS stimulation. In conclusion, integrin β3 positively regulated TLR4-mediated inflammatory responses via CD14 expression in macrophages in septic condition. Specifically targeting integrin β3/TLR4-CD14 signaling pathway may be a potential treatment strategy for polymicrobial sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.