Abstract

Integrin α2β1 is a widely expressed collagen I receptor which also mediates laminin-111 binding in some cell types, but the functional relevance of collagen versus laminin binding for different cell types is poorly understood. Here we use AFM-based singe-cell force spectroscopy (SCFS) to compare α2β1-mediated adhesion strength to collagen and laminin in different cell types. Chinese Hamster Ovary (CHO) cells stably expressing integrin α2β1 (CHO-A2) displayed enhanced adhesion to collagen, but weak adhesion to laminin, consistent with a role of α2β1 as a receptor only for collagen in these cells. Inversely, the α2β1-deficient CHO wildtype cells (CHO-WT) showed weak adhesion to collagen, but strong adhesion to laminin-111, in turn suggesting that integrin α2β1 expression suppresses laminin binding. Analogous results were obtained in a pair of SAOS-2 human osteosarcoma cell lines. Again, wildtype cells (SAOS-WT) adhered strongly to laminin and poorly to collagen, while expression of integrin α2β1 (SAOS-A2) induced strong adhesion to collagen, but reduced adhesion to laminin. Expression of α2β1 also shifted cell spreading preference from laminin to collagen and suppressed laminin-dependent transmigration. In agreement with reduced laminin adhesion, α2β1 expression downregulated transcription and expression of integrin subunits α6 and β4, components of the main laminin-111 binding receptors integrin α6β1 and α6β4 in these cells. Integrin α6 and β4 expression was also reduced when α2 expression was chemically induced using tetradecanoyl-phorbol-acetate (TPA). Our results thus show that integrin α2β1 expression negatively regulates integrin α6β1 and α6β4-mediated adhesion, spreading and invasion on laminin in different cancer cell types. In contrast to SAOS-WT, but similar to SAOS-A2 osteosarcoma cells, primary Human osteoblasts (HOB) cells express α2 but only low levels of β4 integrin, preferentially adhere to and spread on collagen over laminin and show suppressed laminin-dependent transmigration. By enhancing collagen binding directly and suppressing laminin binding indirectly through laminin receptor downregulation, α2β1 expression may thus re-direct migrating cancer cells from laminin-rich to collagenous tissues and partially revert osteosarcoma cells towards an untransformed phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.