Abstract
Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.