Abstract

Bifenthrin is a common pesticide that is widespread in aquatic environments. Although it has been shown to be toxic to aquatic organisms, its immunotoxicity and mechanism are unclear. Herein, we reported the immunotoxicity of bifenthrin on adult Chinese rare minnow (Gobiocypris rarus) after 28 days of exposure to different concentrations of bifenthrin (0.1, 0.3, and 1.0 μg/L) and 36-h Pseudomonas fluorescens challenge. Bifenthrin inhibited the fish humoral immune response to bacteria by altering the lymphocyte and neutrophil ratios and decreasing the production of lysozyme, complement component 3, immunoglobulin M, and C-reactive protein, particularly were 1.0 μg/L. Bifenthrin caused intestinal damage and significantly reduced the volume of intestinal mucus at 12 and 36 hours postinjection (hpi) (p < 0.05). Moreover, 1.0 μg/L bifenthrin significantly increased the fish mortality and bacterial loads at 12 and 36 hpi (p < 0.05). RNA-seq analysis revealed several enriched genes involved in pathogen attachment and recognition, inflammatory responses, and complement system at the early-to-mid stage of infection (4-12 hpi). Overall, our results corroborated that bifenthrin induced immunotoxicity in Gobiocypris rarus, resulting in immune dysfunction of fish and increasing their sensitivity to bacterial infection and accelerating mortality. Moreover, 4-12 hpi was better than 36 hpi for analyzing immune responses against pathogen infection in fish exposed to bifenthrin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call