Abstract

The utilization of biomass, a bountiful and renewable natural resource, has become increasingly important with respect to climate change and environmental regulation. The conversion of lignocellulosic biomass to 2,5-furandicarboxylic acid (FDCA) is a particularly promising technology that is essential for polyethylene furanoate production, which can replace existing petroleum-derived terephthalic acid. This study presents a new process design for economic FDCA production from lignocellulosic biomass. The economics of the process are maximized by introducing an effective biomass fractionation method based on catalytic conversion and separation subsystems. Pinch analysis coupled with a heat pump was performed to minimize the utility consumption in the process, thereby reducing the heating requirement by 66.3%. Furthermore, the integrative economic feasibility and environmental sustainability of the process were systematically assessed via techno-economic analysis (TEA) and life-cycle assessment (LCA). The TEA determined a minimum FDCA selling price of $1,520/ton that can increase to $5,203/ton given cost growth and performance at the pioneer plant. Moreover, sensitivity analysis identified the principal cost drivers of the process. LCA showed the environmental impact of each subsystem of the process and revealed that exchanging fossil-based electricity sources for renewable sources and technology can lead to a more environmentally friendly process. Integrative process design can provide comprehensive perspectives for decision-makers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.