Abstract

AbstractThe genus Potamometra Bianchi, 1896 represents big rheophilic semi‐aquatic bugs that typically inhabit middle‐altitude mountainous streams. Here, we integrated molecular and morphological data for delimiting species boundaries and understanding the evolutionary history of the genus Potamometra. Twenty‐seven complete mitochondrial genomes of Potamometra were sequenced, with samples representing most of the known geographically distributed locations around the Sichuan Basin. The results of different species delimitation methods (ABGD, bPTP, GMYC and BPP) based on the monolocus or multilocus data strongly supported the existence of two cryptic new species (Potamometra anderseni Zheng, Ye & Bu, sp. nov. and Potamometra zhengi Zheng, Ye & Bu, sp. nov.) although more entities were found in the tree‐based delimitation methods. The two new species were successfully validated using morphological characters within a detailed taxonomic framework. Phylogenetic analyses supported the reciprocal monophyly of the seven highly node‐supported clades, which were matched with the five known species and two new taxa. A novel gene arrangement pattern that two trnF (trnF1 and trnF2) genes separated by an intergenic spacer (IGS) were found in all the species except the sister group of Potamometra berezowskii Bianchi, 1896 and Potamometra linnavuorii Chen, Nieser & Bu, 2016. This gene rearrangement event could be explained by the tandem duplication and random loss (TDRL) model. Our study emphasized that the combination of molecular sequence data, morphological characters and mitochondrial structural information could improve the accuracy of species delimitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call